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Abstract: Periapical radiographs are routinely used in dental practice for diagnosis and treatment
planning purposes. However, they often suffer from artifacts, distortions, and superimpositions,
which can lead to potential misinterpretations. Thus, an automated detection system is required
to overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields,
including medicine and dentistry, by facilitating the development of intelligent systems that can aid
in performing complex tasks such as diagnosis and treatment planning. The purpose of the present
study was to verify the diagnostic performance of an AI system for the automatic detection of teeth,
caries, implants, restorations, and fixed prosthesis on periapical radiographs. A dataset comprising
1000 periapical radiographs collected from 500 adult patients was analyzed by an AI system and
compared with annotations provided by two oral and maxillofacial radiologists. A strong correlation
(R > 0.5) was observed between AI perception and observers 1 and 2 in carious teeth (0.7–0.73),
implants (0.97–0.98), restored teeth (0.85–0.89), teeth with fixed prosthesis (0.92–0.94), and missing
teeth (0.82–0.85). The automatic detection by the AI system was comparable to the oral radiologists
and may be useful for automatic identification in periapical radiographs.

Keywords: artificial intelligence; deep learning; periapical radiographs; dentistry; diagnosis; caries;
implants; fixed prosthesis; dental restoration; teeth numbering

1. Introduction

Radiographs play an essential role in the diagnosis, management, and treatment
planning of dental diseases [1–4]. Periapical radiographs (PA) help diagnose dental caries,
periapical lesions, root fractures, and other dental pathologies by allowing detailed visu-
alization of the teeth and surrounding anatomical structures [2,3]. PA radiographs offer
several advantages, including high resolution, providing detailed images of the objects
under study, being performed in a focused area to avoid overlaps, exposing patients to a
low dose of radiation, and demonstrating good cost-effectiveness. Consequently, they are
routinely employed in dental practice. However, these radiographs often suffer from image
distortions, artifacts, and superimpositions, leading to potential misinterpretation [3,5]. An
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automatic detection method for periapical radiograph evaluation is essential to overcome
these challenges and improve diagnostic accuracy [1].

Artificial intelligence (AI) is a branch of computer science that is dedicated to de-
veloping intelligent computer systems capable of effectively performing complex human
cognitive functions such as problem solving, speech recognition, decision making, learning,
planning, and understanding human behavior [1,6,7]. AI can be classified into weak AI,
which performs specific tasks using trained programs and includes technologies like natu-
ral language processing (e.g., GPT-3—OpenAI) and computer vision (e.g., Face ID—Apple).
It can also be classified into strong AI, which aims to achieve human-level intelligence
and consciousness, offering multitasking and flexibility, raising ethical concerns and dis-
cussions [4]. Since its conception in 1956, AI has found numerous applications across
diverse fields, including medicine [8–10]. AI has immense potential in medicine, from
automated disease diagnosis to facilitating complex procedures such as assisted surgeries.
AI applications in dentistry span various specialties, including radiology, endodontics,
periodontics, oral and maxillofacial surgery, and orthodontics [4,11–15]. Previous studies
have demonstrated that AI has significant potential to improve dental disease diagnosis
and treatment planning, thereby reducing errors in dental practice. To achieve these results,
the amount of data analyzed during AI training will play a crucial role. Generally, the
greater the amount of data analyzed, the better the outcomes [1].

Machine learning (ML) is a subset of AI that enables computer models to make in-
dependent predictions by learning patterns from datasets which can be classified into
supervised, semi-supervised, and unsupervised learning based on the theory of meth-
ods [4,16]. ML systems can further refine prediction accuracy by using algorithms that
analyze and undergo training on datasets, thereby enhancing automated learning capabili-
ties [11,17,18]. However, traditional ML techniques involve significant human intervention,
increasing their susceptibility to errors and inefficiencies [17,19]. Thus, a more autonomous,
multi-layered neural network system called deep learning (DL) was developed to address
these limitations [2,11,12,17,19].

DL is a specialized branch of ML comprising computational models capable of learning
hierarchical features from data beyond mere pattern recognition, enabling the detection
of complex structures such as lines, edges, textures, shapes, and even detailed anatomical
features [13,17]. A basic deep learning model consists of at least three layers [4]. DL models
consist of interconnected and sequentially stacked processing units called neurons, which
form artificial neural networks (ANNs) [17,19]. These ANNs comprise an input layer,
which receives raw data and feeds them into the network; multiple hidden layers, which
perform various transformations and feature extractions from the input data; and an output
layer, which generates the final output or prediction based on the processed information
from the hidden layers [11,13]. This enables ANNs to mimic the human brain’s analytical
processing and exhibit superior information-processing and learning capabilities. ANNs
that can process digital signals like sound, images, and videos through convolutional
mathematical operations are called convolutional neural networks (CNNs) [17]. They use
a sliding window approach to detect, segment, and classify intricate patterns [20]. This
enables automatic feature detection in two-dimensional (2D) and three-dimensional (3D)
images. CNNs differ from ANNs primarily in their architecture. CNNs are designed with
convolutional layers that apply filters to input data, generating feature maps and reducing
image complexity through weight sharing. They also include pooling layers that decrease
the dimensionality of these feature maps, enabling more efficient feature extraction. After
convolution and pooling, CNNs use fully connected layers to transform 2D feature maps
into 1D vectors for classification. This specialized structure allows CNNs to achieve higher
efficiency and accuracy in image recognition compared to traditional ANNs [4]. VELMENI
Inc. (Sunnyvale, CA, USA) developed a specialized CNN architecture tailored for dental AI
applications. This architecture excels at detecting dental findings in periapical radiographs.
This innovative CNN model leverages deep learning to enhance precision in dental image
analysis, advancing diagnostic capabilities.
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The present study aims to evaluate the diagnostic performance of VELMENI Inc.’s
AI system in automatically detecting teeth, caries, implants, restorations, and other dental
features on periapical radiographs. By harnessing advanced AI techniques, this study seeks
to enhance the accuracy, efficiency, and reliability of periapical radiograph interpretations,
ultimately contributing to improved dental care and patient outcomes.

2. Materials and Methods

Radiographic dataset: One thousand anonymized periapical radiographs taken be-
tween June 2022 and May 2023, from individuals aged 18 and older, were obtained from
the EPIC and MiPACs systems of the Department of Oral and Maxillofacial Radiology
at the University of Mississippi Medical Center. Out of the total of 1000 periapical ra-
diographs, only 500 were used to identify teeth, caries, implants, restorations, and fixed
prostheses. Only de-identified periapical radiographs with at least 16 teeth and findings
of caries, implants, restorations, periapical pathology, and fixed prostheses were included
in the study. Periapical radiographs with no visible teeth were excluded. Periapical and
bitewing radiographs with artifacts caused by patient position, beam angulation, patient
motion, overlap, or the superposition of foreign objects were not included in this study. All
periapical radiographs were obtained using XDR sensors (Los Angeles, CA, USA), set with
parameters of 70 kVp, 8 mA, and 0.16 s. The research protocol was approved by the IRB
(2024-146).

Convolutional neural networks (CNNs): CNNs have transformed image recognition
by effectively handling complex and large inputs. Unlike traditional neural networks,
CNNs excel in detecting local features, such as edges and shapes, through convolution
operations using filters or kernels. This ability enables CNNs to recognize patterns within
images, making them particularly adept at identifying objects. Deep CNNs with multiple
layers maintain high accuracy even when objects in images shift or change shape, thanks
to their compositional structure. CNNs are powerful tools widely used in dental AI
applications for image analysis.

Image annotation: Five hundred anonymized periapical dental radiographs were
analyzed and labeled by two independent oral and maxillofacial radiologists, each with a
minimum of five years of experience. The two radiologists underwent the same calibration
process and had comparable years of experience prior to participating in the study. The
specialists independently identified and detected teeth, caries (including all types such as
enamel, dentin, secondary, root, etc.), implants, restorations (amalgam and composites),
and fixed prostheses. The radiographs were labeled to highlight the number of teeth with
caries, the number of implants, the number of teeth with fillings, the number of teeth with
fixed dental prostheses (FDPs), and the number of missing teeth. In addition to the human
analysis, a convolutional neural network (CNN) architecture developed by VELMENI
Inc., located in California, USA, was utilized to detect the same dental categories in the
periapical radiographs. The performance of the artificial intelligence (AI) system was
compared by the two radiologists. The agreement between the AI system and observer
1 was indicated by a filled black circle, while the agreement between the AI system and
observer 2 was indicated by an empty red circle. This comparative approach aimed to
evaluate the efficacy of AI in detecting dental anomalies and to verify the consistency
between human and automated assessments.

Statistical analysis: The Pearson product–moment correlation coefficient, commonly
known as the Pearson product–moment, is a statistical tool that assesses how strongly
and in what direction two continuous variables are linearly related. It is a measure of
the linear association between two variables, where a value of r = 1 indicates a perfect
positive correlation, and a value of r = −1 indicates a perfect negative correlation. This
coefficient is the most widely used method for evaluating linear relationships. Pearson’s
product–moment correlation coefficient was used to compare the observations between
AI-detected dental findings and observers 1 and 2.
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3. Results and Interpretation

The Pearson product–moment showed a strong correlation (R > 0.5) between the
perception of the AI and the perceptions of observer 1 and observer 2 for all structures
that were identified in the periapical radiograph. For the number of teeth with caries, the
AI correlation was found to be 0.70–0.73 (Figures 1 and 2). This demonstrates the AI’s
capability to accurately detect caries, which is critical for early diagnosis and intervention.
For the number of implants, the AI correlation was found to be 0.97–0.98 (Figures 3 and 4).
This near-perfect agreement showcases the AI system’s proficiency in identifying implants,
which is vital for patient treatment planning and follow-up. For the number of teeth
with fillings, the AI correlation was found to be 0.85–0.89 (Figures 2 and 5). This strong
correlation, reflecting the AI’s accuracy in detecting dental restorations, is essential for
assessing the integrity and longevity of dental restorative treatments. For the number of
teeth with fixed prostheses, the AI correlation was found to be 0.92–0.94 (Figures 4 and 6),
while that for the number of missing teeth was found to be 0.82–0.85 (Figure 7). These
capabilities of the AI system are crucial for comprehensive dental evaluations and indicate
a high level of reliability in identifying edentulous areas, which is important for treatment
planning and prosthetic considerations.
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4. Discussion

Accurate diagnosis is a cornerstone of effective dental practice, necessitating the use of
reliable diagnostic tools. Among these, periapical radiography stands out due to its ability
to provide detailed images of the teeth and their supporting bone. Its widespread use is
attributed to several advantages: a high spatial resolution, a straightforward technique, a
minimal radiation dose being administered to the patient, cost-effectiveness, and a painless
process for the patient [3]. However, periapical radiography is not without its limitations.
Issues such as the presence of artifacts inherent to its technique and limited visualization of
surrounding structures can sometimes lead to incorrect interpretations by clinicians. To
address these challenges, the adoption of automatic detection methods to assist dental
professionals in interpreting periapical radiographs is becoming increasingly important.
These advanced methods enhance diagnostic accuracy and improve treatment planning,
ultimately benefiting patient care and limiting human error.

This study aimed to assess the diagnostic capabilities of VELMENI Inc.’s automated
system in identifying teeth, caries, implants, restorations, and fixed prostheses on periapical
radiographs. Using Pearson product–moment correlation coefficient analysis, the results
underscored the level of agreement between the VELMENI AI system, which utilizes CNN
architecture, and the interpretations of two expert human observers.

Convolutional neural networks (CNNs) are extensively utilized and have shown
outstanding performance in tasks such as image segmentation and teeth detection [21,22].
Tuzoff et al. studied an automated system for tooth detection and numbering, discovering
that the CNN’s performance matched that of experts, and could potentially save clinicians
time through automated dental charting. However, they also emphasized that this process
would assist dentists in their decision-making process rather than substitute them [23].
Similar results were obtained in our study, where we found a high correlation (R = 0.85 and
0.82) between the AI dataset and the observers 1 and 2, respectively, for the recognition of
missing teeth.

CNNs have been primarily employed to create AI-based systems for caries detection,
as they can take images as inputs and produce image identification and classification as
outputs. A systematic review reported that the accuracy of AI-based models in predict-
ing caries ranges from 83.6% to 97.1% across various studies. Moreover, AI support for
dentists in detecting enamel caries led to a substantial improvement, with detection rates
increasing from 44.3% to 75.8% [21,24]. The present study also found a strong correlation
in caries detection between the AI and the two human observers, with Pearson correlation
coefficients of R = 0.7 with observer 1 and R = 0.73 with observer 2. It is important to note
that early caries detection is fundamental for preserving tooth tissues, delaying restorative
interventions, reducing expensive restorative treatments, and retaining teeth long-term,
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and can be sometimes missed by inexperienced clinicians [24,25]. In a study performed
by Garcia Cantu et al., it was concluded that the trained neural network outperformed
most dentists in accurately detecting caries lesions on bitewings, particularly for initial le-
sions. Moreover, while dentists tended to under-detect lesions, the neural network slightly
over-detected them [26]. However, they compared the efficiency of AI against experienced
general dentists, rather than oral and maxillofacial radiologists, who are the experts in
interpreting these radiographs, as was performed in our study.

The application of convolutional neural networks for identifying dental implants is a
well-explored area within AI and implantology, where multiple studies have shown promis-
ing results in detecting dental implants in both panoramic and periapical radiographs [27].
These outcomes are consistent with our findings, where the AI demonstrated the highest
agreement with the two human observers in identifying the number of dental implants
(R = 0.97–0.98). These results could offer valuable assistance to dentists in identifying
implants in instances when the patient does not recall having a dental implant placed, or
its location within the oral cavity. Dental implants have become increasingly popular, as it
is a permanent way to restore function after losing a tooth. Along with this trend, more
types and options have become available in the market, most of them with different shapes,
sizes, and overall architectures. By using deep learning algorithms, it is now possible to
determine not only its presence, but also identify the implant’s brand [28,29]. However, the
studies published in the scientific literature often used a limited number of brands, leaving
out many systems available on the market, mainly due to the large number of radiographs
needed to train the machine, making this task extremely difficult to achieve.

Diagnosing various types of restorations might be straightforward for expert clinicians
but challenging for less experienced dentists. Detecting tooth-colored restorations through
visual inspection can be difficult at times, regardless of a clinician’s expertise. A study
employing a CNN achieved promising results in detecting metallic restorations, with a
sensitivity of 85.48%, whereas the sensitivity for detecting composite resin restorations was
41.11% in panoramic radiographs. However, they observed that the AI-based software
showed higher detection errors for resin-based restorations in cases where even the opera-
tors had difficulty identifying them [30]. A study conducted by Abdalla-Aslan et al. found
100% and 83.1% sensitivity to detect amalgam and composite fillings, respectively, using
AI in panoramic radiographs [31]. It is important to consider that periapical radiographs
have higher spatial resolution compared to panoramic radiographs, making restoration
detection and recognition more reliable. The present study found a strong correlation
between the CNN and the two human observers, with correlation coefficients ranging from
R = 0.85 to R = 0.89. These results underscore the potential for using CNNs in diagnosing
and planning treatments for patients, educating students, and practising forensic dentistry.

The detection of the number of teeth with fixed dental prostheses (FDPs) yielded the
second-best results along with the identification of the number of missing teeth mentioned
earlier. In our study, a strong correlation was found between observers 1 and 2 and the AI,
being R = 0.92 and R = 0.94, respectively. On the contrary, a study conducted by Choi et al.
obtained a low performance when detecting prostheses, mainly due to the wide variety of
shapes, the radiopacity, and the materials used for prosthesis. It is also important to note
that they used panoramic radiographs, which are indeed more complex to interpret when
trying to detect different materials [32].

The results of this study highlight the potential of AI systems based on deep learning
for automatically detecting teeth, caries, implants, restorations, and fixed prostheses on
periapical radiographs. These systems can enhance diagnostic efficiency, accuracy, and
consistency, while reducing repetitive tasks. Additionally, machine learning in dentistry
can support fundamental dental radiography, complement further clinical exams, aid in
training future dental practitioners, and assist in forensic body identification. Despite
the promising outcomes in identifying common conditions on periapical radiographs,
the study’s limitations must be acknowledged. The dataset used was limited and lacked
external data, which may affect the generalizability of the results. To overcome these
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limitations, future research should utilize larger and more diverse datasets to provide
deeper insights and strengthen the validity of the findings.

Even with the recent advancements in AI technology for detecting dental lesions, the
novelty and practical application of this technology in dental radiology remain areas of
ongoing development. To improve accuracy in diagnosing caries and periodontal disease,
we highlight the importance of integrating advanced machine learning algorithms with
extensive and diverse datasets. The cost of these services may be variable and will depend
on demand for the software. We suggest exploring partnerships with technology providers
and leveraging economies of scale through collaborative research, which may lead to more
affordable solutions as AI technology becomes more prevalent and cheaper. These measures
aim to enhance the reliability and accessibility of AI in clinical practice, addressing key
concerns and paving the way for its effective integration into routine dental care.

In conclusion, it has been stated that more experienced examiners show an improved
diagnostic accuracy compared with less experienced ones. Yet, any qualified clinician can
suffer from both mental and eye fatigue, which could lead to them ignoring important
radiographic signs that can interfere with their final diagnostic decisions, resulting in
an incorrect or misinterpreted diagnosis. This problem can be avoided by the use of AI,
significantly improving diagnostic accuracy and consistency, as it has been proven that
it can automatically detect conditions such as caries, periodontal disease, missing teeth,
restorations, pathosis, etc., that might be missed by human examiners [30].

Another clinical application of AI is workflow optimization, as it facilitates automated
report generation and seamless integration with electronic health records, thus streamlining
data and reducing the time clinicians spend on manual tasks. AI also plays a crucial role in
education by providing training tools and decision support systems that enhance diagnostic
skills and support decision-making, especially in academic institutions. Additionally, AI
improves patient communication through visual aids and educational materials that help
patients understand their conditions and treatment options better. Finally, AI contributes to
research and development by analyzing large datasets to uncover trends and innovations,
driving advancements in dental diagnostics and treatment technologies [33].

This study showcases the potential of modern CNN architectures for automated dental
X-ray interpretation [33,34]. These results confirm that AI, and specifically this approach, is
of sufficiently high quality to be incorporated into software for real-world applications and
daily practice. Future research is needed to advance the current knowledge and disease
recognition from other anatomical areas of the maxillofacial skeleton utilizing conventional
and volumetric images, such as cone beam computed tomography.
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